Blogia
Un Mundo en 4D

Un poquito de historia. 3...2...1...¡acción!

Un poquito de historia. 3...2...1...¡acción! En 1904, el matemático francés Henri Poincaré (1854-1912) conjeturó que el resultado obtenido para la esfera n=2 del espacio de dimensión 3 tenía un análogo para la esfera n=3 del espacio de dimensión 4. En otras palabras, en el espacio de dimensión 4, toda variedad de dimensión n=3, cerrada y simplemente conexa, sería homeomorfa a la esfera de dimensión n=3. Pero Poincaré no consiguió probar su conjetura. Tampoco ninguno de sus contemporáneos ni sucesores. Con el tiempo, la conjetura de Poincaré cobró interés hasta convertirse en el problema abierto más notable de la Topología Geométrica, con destacables implicaciones para la Física. Más aún, llegó a convertirse en uno de los problemas sin resolver más importantes de la Matemática.

Para n=1 la conjetura es trivial y para n=2 ya fue demostrada en el siglo XIX. Para n=5, hubo de esperar hasta 1961, cuando lo hizo Erik Christopher Zeeman. Ese mismo año, Stephen Smale lo consiguió para n igual o mayor que 7 y, en 1962, John R. Stallings para el caso n=6. Los casos n=3 y n=4 se resistían y hubo que esperar a 1986 cuando, en lo que se consideró una hazaña matemática del estadounidense Michael Hartley Freedman, se consiguió demostrar el caso n=4. El problema es que, resuelto con éxito para todas las demás dimensiones, el caso original n=3, planteado por Poincaré, se resistía denodadamente a cualquier demostración matemática hasta que Grigori Perelman hizo pública su demostración.

Henri Poincaré estableció dicha conjetura en 1904, indicando que la esfera tridimensional era única y que ninguna de las otras variedades tridimensionales compartían sus propiedades.

¿Y esta publicidad? Puedes eliminarla si quieres
¿Y esta publicidad? Puedes eliminarla si quieres

1 comentario

Tostadora -

¡Hala, Hala! A discutir...
¿Y esta publicidad? Puedes eliminarla si quieres